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On the Characterization of q-Superlinear 
Convergence of Quasi-Newton Methods 

for Constrained Optimization 

By J. Stoer and R. A. Tapia* 

Abstract. In this paper we present a short, straightforward and self-contained derivation of the 
Boggs-Tolle-Wang characterization of those quasi-Newton methods for equality-constrained 
optimization which produce iterates which are q-superlinearly convergent. 

1. Introduction. We begin by considering the equality-constrained optimization 
problem 

minimize f(x) 

subject to g(x) = 0, 

where f: R"- R and g: R' -- Rm (m < n). Along with problem (1.1) we consider 
the Lagrangian l(x, X) = f(x) + XTg(x), a local solution x* and its associated 
multiplier X. (i.e., X* is such that VXl(X* X*) = 0). 

On occasion we will denote an operator evaluated at xk or x* by deleting the 
argument but instead using the subscript k or * as the case may be, e.g., g* = g(x*) 
or fk = f(Xk). We also denote the Hessian of the Lagrangian at (x*, X*) by w* (i.e., 
W* = V21(x*, A*)). 

By a successive quadratic programming (SQP) quasi-Newton method for problem 
(1.1) we mean the iterative procedure 

(1.2) Xk?+ Xk + Sk, k= 0,1, . . ., 

where Sk solves the quadratic program 

(1.3) minimize vfk S + 2STBks 

subject to vgTS + g 0 0 

for given Bk. 
In the analysis of convergence rates for the SQP method the following assump- 

tions are standard: 
Al: f, g E C2(D) where D is an open neighborhood of x*, 
A2: xk e D and {Xk } converges to x*, 
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A3: vg(x) has full rank Vx E D, 
A4: qlw* > 0 V q 0 such that vg*T = 0, 
A5: qTBkq > 0 VXq 0 0 such that vgkT = 0 and V k. 

Assumption A4 is second-order sufficiency for problem (1.1) and Assumption A5 is 
second-order sufficiency for the SQP subproblem (1.3). It follows that our subprob- 
lem is convex, has a unique solution and our iterative procedure is well defined. 
Moreover, for x E D, Assumption A3 allows us to consider the projection operator 

(1.4) P(x) = I - Vg(x)(Vg(x)T g(X)) Vg(x)T. 

Clearly, P(x) projects onto the null space of Vg(X)T. 
Suppose that { Xk} has been generated by the SQP method. Boggs, Tolle and 

Wang [1] show that, under the assumption that the convergence of {Xk} to x* is 
q-linear, the convergence will also be q-superlinear, 

(1.5) lim 9Xk?1 X*II =0, 
k-oo IIXk X*I1 

if and only if 

(1.6) lim 1IPk[Bk W*]Skll - 0 
k-*oo ISkI 

This characterization result is a nice extension to constrained optimization of the 
Dennis-More [2] characterization for unconstrained optimization. Recently, Fonte- 
cilla, Steihaug and Tapia [4] derived the Boggs-Tolle-Wang characterization without 
the q-linear convergence assumption. Even more recently, Nocedal and Overton [7] 
also derived this characterization without the q-linear convergence assumption. 

The following statements serve to motivate the present work. All three previous 
derivations of the Boggs-Tolle-Wang characterization leave something to be desired. 
The Boggs, Tolle and Wang [1] derivation is neither short nor direct and uses the 
unnecessary assumption of q-linear convergence; however we emphasize that it was 
the first derivation. The Fontecilla, Steihaug and Tapia [4] derivation is lengthy and 
not direct. This is to be expected since they solve a more difficult problem. 
Specifically, they obtain the Boggs-Tolle-Wang characterization as a special case of a 
characterization result for a more general class of quasi-Newton methods than those 
considered here. Members of their class need not give iterates which satisfy lin- 
earized constraints. Nocedal and Overton [7] give a short and direct derivation. 
However, their derivation is based on an existence theorem and a differentiation 
formula from differential geometry. The theorem and the formula are due to 
Goodman [5] and are nontrivial. It is not clear how their derivation could be given in 
a complete manner in an elementary presentation. The derivation of the Boggs- 
Tolle-Wang characterization was not the principal issue of these latter two papers. 

In Section 2 we present several formulations which are equivalent to the SQP 
quasi-Newton formulation. In Section 3 we use one of these equivalent formulations 
and the Dennis-More characterization to derive the Boggs-Tolle-Wang characteriza- 
tion. Concluding remarks are given in Section 4. 
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2. Formulations Equivalent to SQP. The material in this section is taken from 
Tapia [10]. The reader interested in motivation and further detail is referred to that 
paper. 

Extended System Formulation. If we apply the first-order necessary conditions to 
the quadratic programs (1.3), we see that the SQP quasi-Newton step s and its 
associated multiplier X can be obtained from the following linear system: 

(2.1a) Bks + Vg'X = -Vfk, 

(2.1b) Vgks = -9k 

By Assumption A5 we know that (1.3) is a convex program. It follows that in this 
case the first-order necessary conditions are also sufficient conditions. Also from A5 
we know that s is unique. This means that the quadratic program (1.3) and the 
linear system (2.1) determine the same s and it is necessarily unique. 

Multiplier Substitution Formulation. We will show that determining s from (2.1) is 
equivalent to determining s from the linear system 

(2.2) [PkBk + VgkVgk]5 = [PkVfk + Vgkgk]. 
Toward this end, observe that if we define 

(2.3) X = -(Vgv gk'Vg[ (Bks + Vt), 
then we can write 

(2.4) Pk[ Bks + Vfk] = BkS + Vfk + VgkX- 

Suppose that s has been obtained from (2.1). Multiplying (2.1a) by Pk. recalling that 
Pkvgk = 0 and using (2.1b), we see that s satisfies (2.2). Now, suppose s satisfies 
(2.2). Multiplying (2.2) by VgT and recalling that vgkTPk = 0, we see that (2.1b) is 
satisfied. It follows that the left-hand side of (2.4) is zero; hence the right-hand side 
of (2.4) is zero. This means that (s, ') is the unique solution of (2.1). 

3. Derivation of the Boggs-Tolle-Wang Characterization. We begin with several 
simple observations. If P is given by (1.4) then 
(3.1) P(x)vf(x) = Vf(x) + vg(x)X(x), 
where 

(3.2) X(x) = -(Vg(X)TVg(X)) Vg(X)TVf(X). 

It follows from (3.1) and (3.2) that if 

(3.3) F(x) = P(x)vf(x) + Vg(x)g(x), 
then 

(3.4) F'(x*) = P*w* + Vg*Vg*i. 

Thus, we can interpret (2.2) (and therefore SQP) as a quasi-Newton method applied 
to the nonlinear system F(x) = 0, where F is given by (3.3) and the approximation 
to the Jacobian F'(xk) is given by PkBk + VgkVgT. Moreover, if F'(x*) is singular, 
then by the equivalence between (2.1) and (2.2) it follows that the matrix 

(3.5) (B; vg) 
( * ) (~~~~~~Vg T o 

is singular. This in turn implies that the quadratic program (1.3) with Xk = x* and 
Bk = W* does not have a unique solution. This statement contradicts Assumptions 
A3 and A4. 
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Now, since F E C'(D) and F'(x.) is nonsingular, the Dennis-More [2] char- 
acterization applies and (2.2) (therefore SQP) generates iterates which are q-superlin- 
early convergent if and only if 

(3.6) lim |[PkBk + VgkvgT-(P~w* + vg*vg* )] SkI /11kj S| 0- 

Finally, by adding and subtracting PkW* in (3.6) we see that (3.6) is equivalent to the 
Boggs-Tolle-Wang condition (1.6). 

4. Summary and Concluding Remarks. In this note we have presented what we 
consider to be a short, direct and self-contained derivation of the Boggs-Tolle-Wang 
characterization of q-superlinear convergence for quasi-Newton methods for con- 
strained optimization. While we have stated that the three previous derivations 
(Boggs, Tolle and Wang [1]; Fontecilla, Steihaug and Tapia [4] and Nocedal and 
Overton [7]) leave something to be desired, we quickly add that the present work was 
strongly influenced by these three papers. Indeed, the basic idea that led to the 
present derivation was to attempt to parallel the Nocedal-Overton derivation using a 
formulation of the quasi-Newton method which possessed the attribute that all 
necessary differentiations could be obtained in a straightforward manner. As we 
have seen, one of the formulations suggested by Tapia [10] possesses this property. 

The authors acknowledge comments made on an earlier draft of this paper by 
R. H. Byrd, J. E. Dennis, H. Martinez, J. J. More, T. Steihaug, and especially M. 
Overton. 
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